Simple benchtop patterning of hydrogel grids for living cell microarrays.
نویسندگان
چکیده
A living cell microarray consists of an orderly arrangement of cells attached to a solid support such as a glass microscope slide. The chief difficulty of obtaining such arrays is the fabrication of substrates patterned with micro-wells, adhesive spots, or other features to guide orderly cell attachment. Here we report a novel method using woven Nylon mesh to micropattern three-dimensional alginate hydrogel grids on glass slides. The Nylon mesh is both inexpensive and off-the-shelf. By using Nylon mesh we have eliminated any need for lithography, clean room equipment, and microarray printers to generate microarray patterns; thus, this technique can be easily adopted by biological research labs that may lack microfabrication expertise and facilities. We have demonstrated that glass slides micropatterned with hydrogel grids guide the orderly attachment of single fibroblast cells and Schwann cell clusters in microarrays. The fibroblast arrays consisted of 70 microm square compartments at a density of 21,000 compartments per cm(2). The Schwann cell arrays consisted of 100 microm square compartments at a density of 6000 per cm(2). This patterning technique addresses the need for a simple, inexpensive, benchtop method for micro-patterning glass slides and obtaining living cell microarrays.
منابع مشابه
Living Cell Microarrays: An Overview of Concepts
Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consistin...
متن کاملCytotoxity Assessment of Gold Nanoparticle-Chitosan Hydrogel Nanocomposite as an Efficient Support for Cell Immobilization: toward Sensing Application
Cell-based biosensors have become a research hotspot in biosensors and bioelectronics fields. The main feature of cell-based biosensors is the immobilization of living cell on the surface of transducers. Different types of polymers which are used as scaffolds for cell growth should be biocompatible and have reactive functional groups for further attachment of biomolecules. In this work, the cel...
متن کاملMicropatterning of 3D Microenvironments for Living Biosensor Applications
Micro-scale printing and patterning of living cells has multiple applications including tissue engineering, cell signaling assays, and the fabrication of cell-based biosensors. In this work, a molecular printing instrument, the Bioforce Nano eNabler, was modified to enable micron-scale -quill-pen based printing of mammalian cells in a 3D hyaluronan/gelatin based hydrogel. Specifically, photo-in...
متن کاملA simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks.
Bioprinting is a rapidly developing technique for biofabrication. Because of its high resolution and the ability to print living cells, bioprinting has been widely used in artificial tissue and organ generation as well as microscale living cell deposition. In this paper, we present a low-cost stereolithography-based bioprinting system that uses visible light crosslinkable bioinks. This low-cost...
متن کاملPhoto- and electropatterning of hydrogel-encapsulated living cell arrays.
Living cells have the potential to serve as sensors, naturally integrating the response to stimuli to generate predictions about cell fate (e.g., differentiation, migration, proliferation, apoptosis). Miniaturized arrays of living cells further offer the capability to interrogate many cells in parallel and thereby enable high-throughput and/or combinatorial assays. However, the interface betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2010